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1. Introduction

The mathematical description of the migration of small neutral particles, such as neutrons
and photons, through a background material is usually referred to as Transport Theory [I].
In practical terms, in a deterministic approach, the equation that describes the interactions
of these migrating particles with matter is the well-known linear Boltzmann equation (LBE)
[1]. Several applications in science have been developed using the LBE as mathematical model.
Examples are included in nuclear reactor physics, astrophysics, nuclear medicine, oil exploration,
non-destructive test methods, among others.

The development of the LBE (also referred to as the transport equation) is based on considering
that the material properties (geometry, cross sections, etc) of the background material are
known. This means, that in order to determine the particle angular flux (solution of the LBE)
it is required to know previously the material parameters in each point of space and time.
However, in many practical situations (such as radiation transport through atmospheric clouds),
the properties of the background system in which particles travel are known only in a statistical
sense.

The branch of Transport Theory that deals with this type of problem is known as Stochastic
Transport Theory. Hence, as the material properties are known only in a statistical sense, instead
of looking for the true solution of the transport equation, the goal is to find the ensemble-average
(expected value) of the particle flux. To use the LBE in this type of situation it is necessary
first to use other methods, such as the atomic mix model (the most notable and widely used), to
derive cross sections that are applicable (functions of space and time) to this equation. However,
the atomic mix model assumes that the distribution of chord lengths between scattering centers
is exponential. This assumption is very restrictive since it implies that the medium spatial
heterogeneities occur on a length scale which is small compared to a typical mean free path and
that the locations of the scattering centers are uncorrelated. Therefore, the LBE is unable to
accurately address certain classes of stochastic problems.

By adding the term “nonclassical” to transport problems, we mean transport problems where
the probability distribution function for distance-to-collision is not exponentially distributed.
As the LBE inherently assumes that the particle flux is exponentially attenuated, a generalized
linear Boltzmann equation (GLBE) which would accounts for situations where the particle flux
is not exponentially attenuated should be derived. This was done by Larsen in the work [2] and
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expanded later in [3]. For monoenergetic problems, the GLBE appears as
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This equation is similar to the LBE except for the introduction of a new independent variable
s, which represents the distance traveled by the particle since its last interaction (birth or
scattering), with s = 0 at the interaction point. The Dirac delta function d(s) that appears
in Eq. follows the definition of the variable s, i.e., it resets the value of s for particles that
just scattered or were born in the system through source (). As we see in Eq. , both the
particle angular flux (¥) and the macroscopic cross section (¥;) are functions of the variable s

and direction of motion £2. Moreover, ¥; satisfies the relation

p(€2, s) = Xi(82, s)e Jo Be(@s)ds’ .

where p(£2, s) is the free-path distribution function in the €2 direction. If one considers ¥; being
independent of €2 and s, Eq. is reduced to an exponential free-path distribution function and
Eq. is reduced to the classic LBE [2].

2. The Spectral Approach

One way to obtain the particle angular flux for nonclassical transport problems is by solving
Eq. . As there exists an extensive number of well-established deterministic methods to solve
the LBE, it is of interest to make use of a methodology that allows one to directly apply these
conventional deterministic methods to the solution of the GLBE. The Spectral Approach (SA)
has been developed to achieve this goal [4]. In the SA the particle angular flux is represented
through the following relation:

U(x,Q,s) =9(x,Q,s)e” Jo (s’ (3)

Function v is then expanded in a truncated series of Laguerre polynomials in s. That is,

(x, R, s) Zz/zmzcﬂ m (), (4)

where M is the truncation order of the Laguerre series and L,,(s) is the Laguerre polynomial
of degree m in s. Substituting Eqgs. and into the “initial value form” [4] of Eq. , it is
possible to obtain, after some mathematical manipulations, a system of equation for ¥,,, i.e.,

M
Q. m(x, ) Q) = P(Q2 Q QHhdY M
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where m =0,1,2,..., M and we have defined
L) = [ p(S ) Las)ds (5D)
0

The system of equations represented by Eq. possesses a “classical” form. In other words,
it is constituted by equations which are very similar to the LBE. In fact, once the functions
described in Eq. are calculated, it is possible to solve Eq. as a slightly modified system
of coupled LBEs.
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3. Solving Nonclassical Problems Using the Spectral Approximation of the GLBE

In the same work where the SA was described [4], the first attempts to solve nonclassical trans-
port problems through Egs. were made. Equations were solved for one-dimensional
problems making use of conventional deterministic methods, namely, the Discrete Ordinates
Formulation (Sy) and the Diamond Difference method [I], for the discretization of the angular
and spatial variables respectively.

The physical system considered in reference [4] is shown in Fig. |1l This system is composed of
two distinct materials periodically arranged, where the period is given by £ = ¢ + {5, with ¢
and /o representing the width of each material. Material 1 is a solid with ¥;;, = 1 cm™!, and
material 2 is defined as a void, i.e., ¥y, = 0 cm~!. This periodic system is randomly placed in

MATERIAL 1 MATERIAL 2 MATERIAL 1 MATERIAL 2 MATERIAL 1

Figure 1: One-dimensional Random Periodic Media [4].

the infinite line —oco < x < oo, such that the probability P; of finding material i € {1,2} in a
given point is ¢;/¢. Therefore, material parameters (such as the cross sections) are stochastic
functions of space. The ensemble-averaged free-path distribution for the problem depicted in
Fig. |1} considering the case where ¢; = {5 (reference [4] also describes situations where ¢1 # {s)
is given through the following relation

Zu _ —Zu(s—nlz/|u) i
(i, s) = { e; (nf + £ s\u\)e_zz[s_(nil)&/m %f nl < slul <nl+ 4 , (©)
Z(slul —nt —tr)e , A nl 4+l < slp| < (n+1)¢
where n = 0,1,.... Table [[| displays the results considering the space domain limits as —10 <
17 S 3, if <7 r<
2 <10, 61 = b = 1 em and Q(z) = 0.5 x 10*" neutrons/cm” - s, if — 0.5 <z <0.5  More.

~ | 0, otherwise
over, the angular quadrature chosen was the Gauss-Legendre Soy and the spatial domain was
discretized such that the width of each discretization cell is 0.005 cm. The benchmarks were
produced by solving 200 classical transport problems using the LBE. Thus, in each classical
transport problem ¥; is independent of p and s (exponential free-path distribution function).
Details of how to obtain the benchmark solution can be found in [5].

Table I: Ensemble-Averaged scalar fluxes for the nonclassical transport problem [4].

x| Benchmark Solution of Egs. Relative error
(cm) | (neutrons/cm?s) (neutrons/cm?s) (%)
| | M=50 | M=200 | M=50 | M=200
c=20.0

0.0 | 3.890079E+16 | 3.891017E+16 | 3.889305E+16 | 2.411346E-02 | -1.988391E-02

50 | 6.598115E+14 | 6.660539E+14 | 6.591396E+14 | 9.460837E-01 | -1.018436E-01

10.0 | 2.999265E+13 | 3.028603E+13 | 2.994294E+13 | 9.781649E-01 | -1.657549E-01
c=0.9

0.0 | 1.427736E+17 | 1.410333E+17 | 1.410050E+17 | -1.218951E+00 | -1.238745E-+00

50 | 3.186643E+16 | 3.218562E+16 | 3.214855E+16 | 1.001670E+00 | 8.853233E-01

10.0 | 4.032572E+15 | 4.365284E+15 | 4.367367E+15 | 8.250617E+00 | 8.302263E+00
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4. Trends in the future

After reference [4] introduced the SA and showed this methodology is interesting for the solution
of the GLBE, 3 research topics emerge naturally for further development: (i) the improvement
of the SA; (ii) the investigation of different deterministic methods for the solution of Egs. (f]);
and (iii) the use of acceleration methods.

In research topic (i) the point is to develop useful modifications of the SA in order to make
this method more efficient. An interesting work is given in reference [6], where the authors
describe a slightly different representation for the particle angular flux (related to Eq. ) that
in some cases allows a severe decreasing of the Laguerre series truncation order, required to
generate accurate results. In research topic (ii), the idea is to explore deterministic methods
that fit well with the GLBE characteristics. One class of such methods that has potential in
this perspective is the class of the spectral nodal methods. As the ensemble-average free-path
distribution function and the macroscopic cross section are not functions of space, the number
of eigenvalue problems (related to the homogeneous solution of Eq. ) needed to be solved is
reduced to one, regardless of the problem. A first work in this path is given in [7].

Efforts should also be given at the development/application of acceleration methods. As the
phase space in the GLBE is extended (in the variable s), the order of the problem needed to be
solved is increased. This situation foments even more the need to accelerate the iterative schemes
used to generate numerical solutions. A successful first attempt can be found in reference [8].
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